On the chromatic forcing number of a random graph

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the chromatic number of a random 5-regular graph

It was only recently shown by Shi and Wormald, using the differential equation method to analyse an appropriate algorithm, that a random 5-regular graph asymptotically almost surely has chromatic number at most 4. Here, we show that the chromatic number of a random 5-regular graph is asymptotically almost surely equal to 3, provided a certain four-variable function has a unique maximum at a giv...

متن کامل

total dominator chromatic number of a graph

given a graph $g$, the total dominator coloring problem seeks aproper coloring of $g$ with the additional property that everyvertex in the graph is adjacent to all vertices of a color class. weseek to minimize the number of color classes. we initiate to studythis problem on several classes of graphs, as well as findinggeneral bounds and characterizations. we also compare the totaldominator chro...

متن کامل

Increasing the chromatic number of a random graph

What is the minimum number of edges that have to be added to the random graph G = Gn,0.5 in order to increase its chromatic number χ = χ(G) by one percent ? One possibility is to add all missing edges on a set of 1.01χ vertices, thus creating a clique of chromatic number 1.01χ. This requires, with high probability, the addition of Ω(n/ log n) edges. We show that this is tight up to a constant f...

متن کامل

On the Computational Complexity of the Forcing Chromatic Number

We consider vertex colorings of graphs in which adjacent vertices have distinct colors. A graph is s-chromatic if it is colorable in s colors and any coloring of it uses at least s colors. The forcing chromatic number Fχ(G) of an s-chromatic graph G is the smallest number of vertices which must be colored so that, with the restriction that s colors are used, every remaining vertex has its color...

متن کامل

On the Chromatic Number of Random Graphs

In this paper we consider the classical Erdős-Rényi model of random graphs Gn,p. We show that for p = p(n) ≤ n−3/4−δ, for any fixed δ > 0, the chromatic number χ(Gn,p) is a.a.s. , +1, or +2, where is the maximum integer satisfying 2( −1) log( −1) ≤ p(n−1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 1983

ISSN: 0166-218X

DOI: 10.1016/0166-218x(83)90022-7